Given an array of n integers $X_{1 \leq i \leq n}$, the span S of X is an array of n integers with S_{i} being the maximum number of consecutive elements X_{j} immediately preceding X_{i} such that $X_{j} \leq X_{i}$. In mathematical notation, elements of S are thus defined,
$S_{i}=\left|A_{i}\right|$,
$A_{i}=\left\{j \leq i \mid \forall k(j \leq k \leq i)\left(X_{k} \leq X_{i}\right)\right\}$.
As an example, the span of the array $X=[40,2,10,50,30,15]$, is the array $S=[1,1,2,4,1,1]$.
Now suppose, for given values of integers m and n, that $X_{1 \leq i \leq n}=\left(P_{i} \bmod m\right)$ where P_{i} is the i-th prime number. We need to compute the sum-modulus-m of the elements of array S, span of X. If $m=10$ and $n=7$, we have $X=[2,3,5,7,1,3,7]$ and $S=[1,2,3,4,1,2,7]$. The desired value is then, $((1+2+3+4+1+2+7) \bmod 10)=0$.

Input

The input file provides an integer T, on the first line, as the number of test-cases. For the next T lines, each line represents a test-case with two integers n and m both in the interval $[1,100000]$.

Output

For each test-case print the sum of the elements of $S \bmod m$, as described above.

Sample Input

3
710
1016
107

Sample Output

