A spelling suggestion is a part of spelling correction program that generates a set of plausible replacements for words that are likely to be misspelled. One way to measure the plausibility of these
replacements is to compute their edit distance against a given misspelled word. The edit distance between two words is the total number of edit operations that have to be done in order to transform one word into the other. Normally these edit operations are insertion, deletion and substitution of a
single character including transposition of 2 consecutive characters. ingle character including transposition of 2 consecutive characters.
For example, for a word "wonder", if the deletion is applied at the character 'o', this word will And if the transposition is applied at "er", it will become "wondre".
In this edit distance strategy, the degree of similarity between two words is up to their minimum edit distance. If the minimum edit distance between word 1_{1} and word d_{2} is lower than the distance between word d_{1} and word d_{3}, then word d_{1} is more similar to word $_{2}$ than to word d_{3}. So the word d_{2} is a better spelling uggestion for word ${ }_{1}$, comparing with word ${ }_{3}$.
Suppose that you are an employee of a software company which needs to build up a prototype
of spelling suggestion program. This prototype tends to be a part of word processing software. The of speling suggestion program. This prototype tends to be a part of word processing software. The
requirement is that it has to use the edit distance strategy for their spelling suggestion. But the substitution operation has to be redefined to match the behavior of mistyping. The cost of substitution of a character with another character depends on the position of them on the keyboard layout. If they are close to each other, the cost is only half of the normal one. For this purpose, the substitution is categorized into near-substitution and far-substitution. Their costs are defined as 1 and 2 respectively.
And the costs for insertion, deletion and transposition are 2. In addition, this program must run fast nough to pass the time limit that is set by your manager. By the way for this prototype, an English QWERTY keyboard layout is chosen to be used.

To generate optimum speling suggestions for each input word, where each optimum spelling sug-别 is a word in dictionary that has the least minimum edit distance from the given input word. he time limit for 5,000 misspelled words is less than or equal to 5 minutes.

Input
is a standard input which contains 3 parts of data. Each of these three parts ends with a blank line.

- The first part is a set of near-substitution rules, where each rule is kept in one line. Each line has - The first field is a character where it can be near-substituted with other characters.

The second field is a sequence of cacters which can be near-substituted for the character in the previous field. There is no space in this field.
The characters that may be contained in this part are characters that can be typed in using a generic English keyboard layout, which are alpha-numeric characters and some punctuation without space or tab. They are listed as the following.

The second part is a sequence of words in dictionary, where each word is kept in one line. The total no. of words is less than or equal to 150,000 .

The characters in dictionary are alphabetical characters with an apostrophe punctuation. * abcdef ghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ,

- The third part is a sequence of words that need to be checked for their spellings. Each of these
words is also kept in one line. The total no. of words is less than or equal to 5,000 .
part, which are alpha-numeric characters and some punctuation. (See the first part.)
Since each of these three parts end with a blank line, the third blank line is the termination the input

Output

er each word in the third part, write a line when contains 3 parts of information, separated with colon.

- The first part is the given input word.
- The second part is the minimum edit distance between the input word and suggestion word(s).
- The third part is an ascending sorted sequence of suggestion word(s), separated with a space There is no space left after the last word

More Explanations

In this sample input, there are 5 near-substitution rules (line no. 1-5), 10 words in dictionary (line no. 7-16) and 12 words looking for their suggestions (line no. 18-29)
In the sample output, there are 12 lines for each corresponding 12 words from the input.
or the 1st word, the minimum edit distance between x and its suggestions ($\mathrm{A} \operatorname{B~Zab}$) is 2. Al For the the (far) substitution costs.
For the 2 -nd word, the minimum edit distance betwe
For the 3rd word, ghided by the ist substiction rule. near-substitution cost, guided by the 1st or 5th substitution rule.
For the 4th word, the minimum edit distance is 4 , which are summed from one far-substitution cost and one deletion cost
Fo deletion and one far-substitution edit distance is 6 . The costs between xxx and (A B Z a b) are from costs.

For the 6th word, the cost between angre and anger is from one transposition costs. The costs etween angre and (angle angry) are from one far-substitution costs.
sabstitution costs. But the cost between angrt similar. Bu from 2 near-sub word is from one far Futes with e and t substitutes with r) according to the near-substitution rule no. 4.

For the 9th word, the word is exactly matched within dictionary. So the cost is 0
or the 10th and 11th words, each cost is from one transposition costs.
. transpositions of CAB to ACB and then ACB to ABC.

Sample Input

a AqQs
b BgG
p Pa
r
ras
z ZaA
Z
a
A
b
B
z
ange
angle
anger
angry
ABC
x
s
z
xx
xxx
angre
angri
angrt
ange.
ACB
BAC
CAB

Sample Output
$\mathrm{x}: 2: \mathrm{AB} \mathrm{Z}$ a
s:1:a
:1:A Z a
$x: 4: A$ B Z a b
$x x x: 6: A$ ABC B Z a
angre:2:anger angle angry
angri $: 2$: angry

