Consider the problem called Fun Coloring below.

Fun Coloring Problem

Instance: A finite set U and sets $S_{1}, S_{2}, S_{3}, \ldots, S_{m} \subseteq U$ and $\left|S_{i}\right| \leq 3$.
Problem: Is there a function $f: U \rightarrow\{R E D, B L U E\}$ such that at least one member of each S_{i} is assigned a different color from the other members?

Given an instance of Fun Coloring Problem, your job is to find out whether such function f exists for the given instance.

Input

In this problem $U=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$. There are k instances of the problem. The first line of the input file contains a single integer k and the following lines describe k instances, each instance separated by a blank line. In each instance the first line contains two integers n and m with a blank in between. The second line contains some integers i 's representing x_{i} 's in S_{1}, each i separated by a blank. The third line contains some integers i 's representing x_{i} 's in S_{2} and so on. The line $m+2$ contains some integers i 's representing x_{i} 's in S_{m}. Following a blank line, the second instance of the problem is described in the same manner and so on until the k-th instance is described. In all test cases, $1 \leq k \leq 13,4 \leq n \leq 22$, and $3 \leq m \leq 111$.

Output

For each instance of the problem, if f exists, print a ' Y '. Otherwise, print ' N '. Your solution will contain one line of k ' Y 's (or ' N 's) without a blank in between. The first ' Y ' (or ' N ') is the solution for instance 1. The second ' Y ' (or ' N ') is the solution for instance 2, and so on. The last ' Y ' (or ' N ') is the solution for instance k.

Sample Input

Sample Output

