Geometric series have many important roles in mathematics. An infinite geometric series that has a positive integer as first term and whose general ratio is a non-negative rational number can be written as follows:

$$
a+a\left(\frac{p}{q}\right)+a\left(\frac{p}{q}\right)^{2}+a\left(\frac{p}{q}\right)^{3}+a\left(\frac{p}{q}\right)^{4}+\ldots \text { to } \infty
$$

Here a is the first term of geometric series and p and q are non negative integer numbers.
Infinite geometric series converges when the general ratio is less than 1 and diverges when the general ratio is greater than or equal to 1 . In other words converging infinite geometric series has summation less than infinity. But for this problem, a converging geometric series is a series whose sum does not exceed a given value, as "less than infinity" does not indicate any specific value. We refer this given value as NEXT_TO_NEVER in this problem. So given the value of NEXT_TO_NEVER and a, your job is to find out how many different fractions $\left(\frac{p}{q}\right)$ are there so that the series remain convergent (Summation not exceeding NEXT_TO_NEVER).

Input

Input file contains less than 550 sets of inputs. The description for each set is given below:
The input for each set is given in a single line. This line contains three integers NEXT_TO_NEVER $\left(1000 \leq N E X T _T O _N E V E R \leq 10000\right), a(1 \leq a \leq 5)$ and MAXV $(20000 \leq M A X V \leq 100000)$. Meaning of NEXT_TO_NEVER and a is already given in the problem statement. The value MAXV indicates the maximum possible value of p and q. Note that the minimum possible value for p and q is 0 (zero) and 1 (One) respectively.

Input is terminated by a line containing three zeroes.

Output

For each line of input produce one line of output. This line contains the serial of output followed by two integers s and t. The first integer s denotes how many different possible fractions $\left(\frac{p}{q}\right)$, are there considering p and q are relative prime. The second integer t denotes how many different possible fractions $\left(\frac{p}{q}\right)$ are there considering p and q may or may not be relative primes. Look at the output for sample input for details.

Sample Input

1000120000
000

Sample Output

Case 1: 121468930199820000

