Arithmancy is one of the most favorite subjects of Hermione Granger, the most intelligent witch of her generation. She was thinking about the last homework given by Professor Vector:

A peculiar magical creature can live in a rectangle drawn into a $n \times n$ square grid if and only if the rectangle is not a square and its sides are parallel to the major axes. Same conditions hold for higher dimensions (yes, the peculiar creature can even be 2500 -dimensional!!!), i.e. if the sides parallel to the major axes are all equal, it cannot live inside the hyper box. For example, in a 3 -dimensional grid, it can live inside a $2 \times 2 \times 3$ or a $3 \times 4 \times 5$ box, but it cannot live inside a $5 \times 5 \times 5$ cube!! In how many ways one can draw a k-dimensional hyper box inside a $n \times n \times \ldots \times n(k$ times $n)$ grid so that the peculiar creature can live inside the hyper box? A way is different from another way if at least one co-ordinate of one corner is different. For example, in a 4×4 grid, $\{(0,0),(0,3),(2,3),(2,0)\},\{(1,0),(1,3),(3,3)$, $(3,0)\}$ and $\{(0,0),(0,3),(4,3),(4,0)\}$ are 3 different ways but $\{(0,0),(0,3),(2,3),(2,0)\},\{(0,3),(2,3)$, $(2,0),(0,0)\}$ and $\{(2,3),(2,0),(0,0),(0,3)\}$ are not different.

Hermione is quite confident of solving it, but she has to go now to the Room of Requirement with Harry and Ron for a secret meeting. Your task is to write a program that solves the problem for Hermione.

Input

The first line contains a single integer $T(T \leq 5,000)$ which denotes the number of test cases. Each of the following T lines contains two integers, $n\left(1 \leq n \leq 10^{9}\right)$ and $k(2 \leq k \leq 2500)$.

Output

For each test case, output a single integer in each line which is the number of ways to draw k-dimensional axis-parallel hyper boxes in an $n \times n \times \ldots \times n$ grid. As this number can be quite large, output the answer $\bmod 1,000,000,007\left(10^{9}+7\right)$.

Sample Input

2
32
22

Sample Output

22
4

