Radars Inc. is a worldwide renowned radar maker, whose excellent reputation lies on strict quality assurance procedures and a large variety of radar models that fit all budgets. The company hired you to develop a detailed inspection that consists of a sequence of Experiments on a specific surveillance model.

There is a field represented with a polar coordinate plane that contains N objects placed at positions with integer polar coordinates. The inspected model is located at the origin $(0,0)$ of the field and can detect objects at a distance less than its detection range R through a scan area defined by four adjustment parameters α, A, h, and H, whose meaning is illustrated with the following figure

Formally, the scan area of the model is the region described by the set of polar points

$$
\{(r, \theta) \mid h \leq r<h+H, \alpha \leq \theta \leq \alpha+A\}
$$

α, A, h and H are four integer values where:

- α specifies the start angle of the radar's scan area ($0 \leq \alpha<360$)
- A specifies the opening angle of the radar's scan area ($0 \leq A<360$);
- h gives the internal radius of the radar's scan area $(0 \leq h<R)$; and
- H gives the height of the radar's scan area $(1 \leq H \leq R)$.

An object placed at (r, θ) will be displayed by the model if $h \leq r<h+H$ and $\alpha \leq \theta \leq \alpha+A$, where the last inequality should be understood modulo 360° (i.e., adding and comparing angles in a circle).

Given N objects placed on the field, you must develop an inspection of the surveillance model through the implementation of E experiments with specific parameterizations. For each experiment you have to find the maximal number of objects on the field that the radar should display if the parameters $\alpha(0 \leq \alpha<360)$ and $h(0 \leq h<R)$ are free to set (as integer numbers), and the parameters $H(1 \leq H \leq R)$ and $A(0 \leq A<360)$ are given.

Input
The input consists of several test cases. Each test case is described as follows:

- A line with two integer numbers N and R separated by blanks, representing (respectively) the number of objects located on the field and the detection range of the model ($1 \leq N \leq 10^{4}$, $2 \leq R \leq 10^{2}$).
- Each one of the following N lines contains two integer numbers r_{i} and θ_{i} separated by blanks, specifying the integer polar coordinates $\left(r_{i}, \theta_{i}\right)$ of the i-th object $\left(1 \leq r_{i}<R, 0 \leq \theta_{i}<360\right.$, $1 \leq i \leq N)$.
- The next line has an integer number E indicating the number of experiments of the inspection $\left(1 \leq E \leq 10^{2}\right)$.
- Each one of the following E lines contains two integer numbers H_{j} and A_{j} separated by blanks, representing (respectively) the fixed height and the fixed opening angle that parameterize the j-th experiment $\left(1 \leq H_{j} \leq R, 0 \leq A_{j}<360,1 \leq j \leq E\right)$.

For each test case you can suppose that there are not two different objects placed at the same integer polar coordinate. The last test case is followed by a line containing two zeros.

Output

For each test case of the input, print E lines where the j-th line contains the maximal number of objects on the field that the radar should display according to the parameterization given for the j-th experiment $(1 \leq j \leq E)$.

Sample Input
6100
157
156
40
15
4015
5015
5015
$45 \quad 30$
4530
4590
4590
21 100359 9100 157
1560
4015
5015
4530
4590
$40 \quad 45$
4045 5045

Sample Output

