Google SketchUp is an easy-to-use program that lets you create, modify and share 3D models. In this problem, you're to write a sim
My SketchUp will be in 2D only
SketchUp is intuitive. To understand this, suppose you've drawn two line segments that intersect other, like this:

Then, you click your mouse at the red dot. If you're using AutoCAD, you'll select a whole segmen shown in the middle picture), but in My SketchUp, you'll only select a small segment (shown in the all sege), because the two segment yoive dran cut each orer. What's more, if you remove two esegment again! Note that in the middle picture, you cannot select the "long" segment as a whole because it's still cut into two pieces.

Here is the general rule: segments that intersect each other actually cut each other; and there will no "redundant" points that can be removed without affecting the appearance of the picture. As wo pictures look the same, they are the same internally. For example, if you draw $(0,0)$-(1,0$)$, then $(1,0)-(2,0)$, you'll have only one segment: $(0,0)-(2,0)$, if you draw $(0,0)-(1,0)$ twice, you'll only get one. In the picture below, there are 14 vertices and 15 segments (no matter how you draw this picture!!).

Your task is to execute a sequence of commands (described in the input format section) and print he description of the resulting picture. Vertices are sorted in ascending order of x, then ascendin
order of y : Segments are represented by a pair of integers a and $b(a<b)$, that means the segment is onnecting vertex a and vertex b (vertices are numbered from 1).

Input
There will be at most 25 test cases. Each case begins with one integer $n(1 \leq n \leq 100)$, the number of operations. Each of the following n lines is formatted as one of:
DRAW $x_{1} y_{1} x_{2} y_{2} x_{3} y_{3}$

remove x yd

In the draw operation, you're drawing a poly-line $\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)-\left(x_{3}, y_{3}\right)-\ldots$, note that if polygon, since the poly-line could be self-intersecting. There will be at least 2 and at most 20 point in a draw operation.
In the remove operation, all the line segments whose distance from (x, y) is at most d, are removed simultaneously (be careful about this!). If no segments satisfy this condition, this operation takes no fect. $-1000 \leq x_{1}, y_{1}, x_{2}, y_{2} \leq 1000,0 \leq d \leq 10$.
the last draw/remove operation. The last test case is

Output

For each test case, print the number of vertices, followed by the coordinates of the vertices (one vertex er ine), sorted as stated in the problem statement. The next line contains the number of segment ptions of the segments.
Tips: In this problem, your output must match the standard output perfectly. In order to prevent yo from printing ' -0.00 ' instead of ' 0.00 ', you're encouraged to add to small number (e.g. 1e-6) to each

Sample Input

DRAW 01010101020020010

DRA	
REMOVE 45	1

DRAW 502020202030
DRAW 40204030
REMOVE 42233
END
DRAW 00010
$\begin{array}{lllll}\text { DRAW } 1 & 0 & 11 & 0 \\ \text { DRAW } 12 & 0 & 15\end{array}$
DRAW 5051

DRAW	8	0	8

REMOVE 521
$\begin{array}{llll}\text { REMOVE } & 5 & 2 & 1 \\ \text { DRAW } & 11 & 0 & 12\end{array}$
END
0
Sample Output
3
12
23
24

