Given n points and m planes in 3D place, you will need to perform t transformations on them, and
then calculate their final states. By “transforming a plane”, we mean transforming all the points on
that plane.

There are three kinds of transformations (in the text below, P means the point being transformed):

TRANSLATE a b ¢ If P’s position was (z,y, z), it becomes (+ a,y + b, z + ¢) after the trans-
formation.

ROTATE a b ¢ theta | P is rotated. The rotation axis is vector (a,b, c), the angle of rotation is
theta degrees. The rotation follows the right-hand rule, so if the vector
(a, b, ¢) points toward you, the rotation will be counterclockwise from your
point of view. The rotation axis always passes through (0, 0, 0).

SCALE a b ¢ If P’s position was (z,y, z), it becomes (ax, by, cz) after the transformation.

This problem uses right-hand coordinate system:

Input

There will be only one test case, beginning with three integers n, m, t
(1 <n,m < 50,000, 1 <t<1,000). Next n lines contain the coordinates
of each point. Next m lines contains four integers a, b, ¢, d to describe a
plane az + by + cz +d = 0 (at least one of a, b, ¢ will be non-zero). Next ¢ lines contain the operations.
All the input coordinates and parameters a, b, ¢, d are real numbers with absolute values not larger
than 10. These input real numbers will have at most two digits after the decimal point. Parameter
theta is an integer between 0 and 359 (inclusive).

Output

For each point, print three real numbers x, y, z on a single line. For each plane, print four real numbers
a, b, ¢, d on a single line. To avoid floating-point issues, a? 4 b? +c2 must be 1, but if there is more than
one choice of (a, b, ¢, d) to represent the answer, anyone is acceptable. Output each real number to two
decimal places. To reduce the impact of floating-point errors, each number you print could differ from
the standard output by up to 0.05.

Sample Input

TRANSLATE 2 3 4
ROTATE 1 0 0 90
SCALE 3 2 1

Sample Output

9.00 -14.00 5.00
0.00 1.00 0.00 12.00

