In the traditional RMQ (Range Minimum Query) problem, we have a static array A. Then for each query $(L, R)(L \leq R)$, we report the minimum value among $A[L], A[L+1], \ldots, A[R]$. Note that the indices start from 1, i.e. the left-most element is $A[1]$.

In this problem, the array A is no longer static: we need to support another operation

$$
\operatorname{shift}\left(i_{1}, i_{2}, i_{3}, \ldots, i_{k}\right)\left(i_{1}<i_{2}<\ldots<i_{k}, k>1\right)
$$

we do a left "circular shift" of $A\left[i_{1}\right], A\left[i_{2}\right], \ldots, A\left[i_{k}\right]$.
For example, if $A=\{6, \mathbf{2}, 4, \mathbf{8}, \mathbf{5}, 1, \mathbf{4}\}$, then $\operatorname{shift}(2,4,5,7)$ yields $\{\mathbf{6}, \mathbf{8}, 4,5,4,1,2\}$. After that, $\operatorname{shift}(1,2)$ yields $8,6,4,5,4,1,2$.

Input

There will be only one test case, beginning with two integers $n, q(1 \leq n \leq 100,000,1 \leq q \leq 250,000)$, the number of integers in array A, and the number of operations. The next line contains n positive integers not greater than 100,000 , the initial elements in array A. Each of the next q lines contains an operation. Each operation is formatted as a string having no more than 30 characters, with no space characters inside. All operations are guaranteed to be valid.

Warning: The dataset is large, better to use faster I/O methods.

Output

For each query, print the minimum value (rather than index) in the requested range.

Sample Input

75
6248514
query $(3,7)$
shift $(2,4,5,7)$
query $(1,4)$
shift (1,2)
query $(2,2)$

Sample Output

1
4
6

