You are given two $N \times N$ square matrices, A and B. Each of the elements of these matrices is an integer between 1 and K (inclusive). You have to convert matrix A into matrix B in minimum number of operations. In each operation you can choose one element of matrix A and change it to any integer between 1 and K (inclusive).

You have to ensure that after any operation the matrix is not converted to a symmetric matrix. A square matrix is said to be symmetric if j-th element of i-th row is equal to the i-th element of j-th row for all (i, j) where $1 \leq i \leq N$ and $1 \leq j \leq N$.

For example:

| $\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$ | $\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$ |
| :---: | :---: | :---: |
| Symmetric Matrix | Non-symmetric Matrix |

Input

Input will start with an integer $T(T \leq 200)$, number of test cases. Each test case starts with a line containing two integers $N(1 \leq N \leq 100)$ and $K(1 \leq K \leq 9)$. This line will be followed by $2 N$ lines. First N lines will represent matrix A and next N line will represent matrix B. Each of these $2 N$ lines will contain N integers, all of these integers are in between 1 and K (inclusive).

Output

For each test case, output a single line containing the case number followed by the minimum number of operations required to convert A into B. If it is impossible to convert A into B obeying the rules, print ' -1 ' instead. See output for sample input for exact formatting.

Sample Input

| 3 | | |
| :--- | :--- | :--- | :--- |
| 3 | 9 | |
| 1 | 2 | 3 |
| 4 | 5 | 6 |
| 7 | 8 | 9 |
| 1 | 2 | 3 |
| 4 | 5 | 6 |
| 7 | 8 | 9 |
| 2 | 3 | |
| 1 | 2 | |
| 1 | 1 | |
| 1 | 1 | |
| 3 | 1 | |
| 2 | 3 | |
| 1 | 2 | |
| 3 | 1 | |
| 1 | 3 | |
| 2 | 1 | |

Sample Output

```
Case 1: 0
Case 2: 2
Case 3: 3
```

