In this problem, you need to simulate the execution of n service programs $P_{1}, P_{2}, \ldots, P_{n}$. Each program is described with a sequence of integers: $T I$ in i_{1} in $_{2} \ldots i n_{I} O$ out $_{1}$ out $_{2} \ldots$ out $_{O}$, that means it takes T unit time to execute, needs I input variables (i.e. $i n_{1} i n_{2} \ldots i n_{I}$), and sets O output variables (i.e. out $_{1}$ out $_{2} \ldots$ out $_{O}$) when it finishes running. A program can be started if and only if all these T input variables are ready (initially available, or set by some other programs).

Imagine you have a super-computer which can execute as many programs in parallel as you like, and every variable can be read and written simultaneously by multiple programs. Your task is to calculate a particular "target" variable, as soon as possible.

Assume there are 4 programs, shown in the table below:

Program No.	Time	Requires	Produces
1	2	X_{1}	X_{2}
2	3	X_{1}	X_{3}
3	4	X_{2}	X_{4}
4	1	X_{3}, X_{4}	X_{5}

The quickest time to get X_{5} is 7 , if only X_{1} is available at startup.
You also need to construct an expression that shows how to execute the programs to achieve the minimal time. The grammar of the expression is recursive:

- Single Program: $\mathrm{P} x$, where $1 \leq x \leq n$. (i.e. P2, P499, etc). Meaning: execute the program immediately. Then end of this program marks the end of this expression.
- Execute in serial: $\left(S_{1} S_{2} \ldots S_{k}\right)$, where every S_{i} is an expression. Note that the outermost pair of parentheses is mandatory. Meaning: execute expression S_{1}, then S_{2} immediately after S_{1} ends, then S_{3} immediately after S_{2} ends, \ldots, and finally S_{k} immediately after S_{k-1} ends. Then end of expression S_{k} marks the end of the whole expression.
- Execute in parallel: $\left(S_{1}\left|S_{2}\right| \ldots \mid S_{k}\right)$, where every S_{i} is an expression. Note that the outermost pair of parentheses is mandatory. Meaning: execute expressions S_{1}, S_{2}, \ldots, and S_{k} simultaneously. The end of last finished expression marks the end of the whole expression.

One of the possible expressions for the example above is (($(\mathrm{P} 1 \mathrm{P} 3) \mid \mathrm{P} 2) \mathrm{P} 4)$. (P1P2P3P4) is not acceptable, since X_{5} is available at time 10 in that expression, later than the optimal time 7 .

Input

There will be at most 100 test cases. Each case begins with three integers n, m, o $(1 \leq n, m \leq 500,1 \leq$ $o \leq m)$. The number of programs is n, the number of variables is m, and the target variable is X_{o}. Variables are numbered 1 to m, programs are numbered 1 to n. The next line contains a 01 string of m characters. The i-th character is 1 if and only if the i-th variable is initially available. The target variable is guaranteed to be unavailable at startup. The following n lines describe the programs. Each line begins with an integer $T(1 \leq T \leq 100)$, the execution time, and an integer I followed by I integers $i n_{1}$, in $_{2}, \ldots, i n_{I}$, as stated above, then an integer O followed by O integers out ${ }_{1}$, out $_{2}, \ldots$, out $_{O}$. $1 \leq i n_{i}$, out $_{i} \leq m, 1 \leq I, O \leq 10$. The last test case is followed by $n=m=o=0$, which should not be processed.

Output

For each test case, print the case number and the total time needed to get the target variable. If it's not possible to get the target variable, print ' -1 ' instead.

If it's possible to get the target variable, print the expression after that, in the same line. Be sure to print a valid expression having at most 10,000 characters, with each program printed at most once. There should be no whitespace characters within the expression.

To make this problem a little bit easier, it's allowed that some programs finish after the optimal time, as long as the target variable is available at the optimal time. You're also allowed to print redundant parentheses (pay attention to the expression length, though). If such an expression does not exist, print 'Can't do in serial-parallel.', without quotes.

Print a blank line after the output of each test case.

Explanation:

After a variable is set, it'll keep available forever. That's why P3 can be executed, in the third example. Also note that there are some other correct expressions for the first sample, e.g. ((P1P3P4)|P2). You can even print (($(\mathrm{P} 1 \mathrm{P} 3) \mathrm{P} 4) \mid \mathrm{P} 2)$ or $((\mathrm{P} 1(\mathrm{P} 3 \mathrm{P} 4)) \mid \mathrm{P} 2)$. Any one of them is acceptable in this problem.

Sample Input

455

10000
21112
31113
41214
123415
121
01
311211
355
10100
31112
11314
324215
133
100
11112
000

Sample Output

Case 1: 7 (((P1P3)|P2)P4)
Case 2: 31 P1

Case 3: 6 ($(\mathrm{P} 1 \mathrm{P} 3) \mid \mathrm{P} 2)$
Case 4: -1

