You are playing a single player game where you can convert one integer from another through a sequence of moves. The integer Y is reachable from X in a single move if the following is satisfied.

$$
Y=\frac{X \times P_{2}^{k}}{P_{1}^{k}}
$$

where k is a positive integer, P_{1} and P_{2} are prime numbers and X is divisible P_{1}^{k}.
For example 18 is reachable from 8 in one move, because you can divide 8 by 4 and then multiply by 9 . But 6 is not reachable from 8 . Given two integers A and B calculate the minimum number of moves necessary to transform A into B. Both A and B can be very large. So each of them is needed to be expressed as a multiplication of a sequence of small integers: $A=\prod_{i=1}^{N} a_{1}$ and $B=\prod_{i=1}^{M} b_{1}$

Both of the sequences a_{i} and b_{i} will be given as inputs.

Input

First line of the input contains $T(1 \leq T \leq 40)$ the number of test cases. Then T blocks of test cases follows. First line of the test case contains $N(1 \leq N \leq 300)$ followed by N integers. N is the length of the sequence a_{i} and the following N integers form the sequence a_{i}. The second line starts with an integer $M(1 \leq M \leq 300)$. M is the length of the sequence b_{i} and the following M integers form the sequence b_{i}. Each of integers in these two sequences will be between 2 and 200 (inclusive).

Output

For each case of input, print the serial of output followed by an integer: the minimum number of moves required to transform A to B. If it is impossible to transform A to B with any number of moves output ' -1 ' instead. If the minimum number of moves is greater than or equal to 20 print a ' -1 ' as well.

Sample Input

4
14
19
222
233
18
16
23211
3272513

Sample Output

Case 1: 1
Case 2: 1
Case 3: -1
Case 4: 3

