We want to build a rectangle where each row is a permutation of 0 to $\mathrm{N}-1$. We want to make this rectangle with as many rows as possible while maintaining the following constraints.

$$
\sum_{j=0}^{N-1} E_{i, j} \leq A_{i} \text { and } \sum_{j=0}^{N-1} E_{i, j} \leq B_{i}, \text { where } E_{i, j}= \begin{cases}D_{i, j}-C_{i, j} & \text { when } D_{i, j}>C_{i, j} \\ 0 & \text { when } D_{i, j} \leq C_{i, j}\end{cases}
$$

$D_{i, j}$ is the number of occurrences of integer j in the column $i . C$ is a matrix of N rows and N columns will be given as input. A and B are two sequences of size N will be given as input. Given N, A, B, C build a rectangle with the largest possible number of rows.

Input

First line of the input contains $T(1 \leq T \leq 50)$ the number of test cases. It is followed by T test cases. Each test case starts with an integer $N(1 \leq N \leq 30)$ indicating the number of columns in the rectangle. Next line contains N integers separated by single spaces.

These integers are A_{0} to $A_{N-1}\left(0 \leq A_{i} \leq 10\right)$. Next line contains N integers separated by single spaces. These integers are B_{0} to $B_{N-1}\left(0 \leq B_{i} \leq 10\right)$. Each of the next N line contains N integers in each line. The integer on row i and column j is $C_{i, j}\left(0 \leq C_{i, j} \leq 4\right)(i$ and j starts from zero). A blank line will follow each test case.

Output

For each test case the first line of the output will be in the following format 'Case \#C: R '. Quotes are for clarity only. C is the test case number starting from $1 . R$ is the maximum possible rows of the rectangle. Each of the next R lines should contain N integer in each line separated by spaces. Each of these N integers in each line should be a permutation of 0 to $N-1$. The whole $R \times N$ rectangle should maintain the constraints as described in the problem statement.

Sample Input

2

3
000
000
200
020
002
3
123
321
123
231
312

Sample Output

Case 1: 2
012
012
Case 2: 7
012
102
102
210
210
210
021

