
Long before Gutenberg invented letterpress printing, books have been transcribed by monks. Cloisters
wanted to be able to check that a book was transcribed by them (and not by a different cloister).
Although watermarked paper would have been an option, the cloister preferred to use a system of
hard-to-fake serial numbers for identifying their transcriptions.

Each serial number consists of 10 single numbers a1, a2, . . . , a10. Valid serial numbers satisfy a1 +
a2+ . . .+a9 ≡ a10 (modN) with 0 ≤ a10 < N . The N is specic to and only known by the cloister that
has transcribed this book and is therefore able to check its origin.

You are confronted with a pile of books that presumably have been transcribed by a single cloister.
You are asked to write a computer program to determine that cloister, i.e. to calculate the biggest
possible N that makes the serial numbers of these books valid. Obviously, no cloister has chosen N = 1.
So if your calculations yield N = 1, there must be something wrong.

Input

Input starts with an integer t on a single line, the number of test cases (1 ≤ t ≤ 100). Each test
case starts with an integer c on a single line, the number of serial numbers you have to consider
(2 ≤ c ≤ 1000). Each of the following c lines holds 10 integer numbers a1, a2, . . . , a10 (0 ≤ ai < 228)
separated by single spaces.

Output

For each test case, output a single line containing the largest possible N , so that each given serial
number for that test case is valid. If you cannot nd a N > 1 satisfying the condition for all serial
numbers or if the numbers are valid independent of the choice of N , output ‘impossible’ (without the
quotes) on a single line.

Sample Input

4

2

1 1 1 1 1 1 1 1 1 9

2 4 6 8 10 12 14 16 18 90

3

1 1 1 1 1 1 1 1 1 1

5 4 7 2 6 4 2 1 3 2

1 2 3 4 5 6 7 8 9 5

2

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 0

2

2 2 2 2 2 2 2 2 2 0

1 1 1 1 1 1 1 1 1 1

Sample Output

impossible

8

impossible

2


