Long before Gutenberg invented letterpress printing, books have been transcribed by monks. Cloisters wanted to be able to check that a book was transcribed by them (and not by a different cloister). Although watermarked paper would have been an option, the cloister preferred to use a system of hard-to-fake serial numbers for identifying their transcriptions.

Each serial number consists of 10 single numbers $a_{1}, a_{2}, \ldots, a_{10}$. Valid serial numbers satisfy $a_{1}+$ $a_{2}+\ldots+a_{9} \equiv a_{10}(\bmod N)$ with $0 \leq a_{10}<N$. The N is specic to and only known by the cloister that has transcribed this book and is therefore able to check its origin.

You are confronted with a pile of books that presumably have been transcribed by a single cloister. You are asked to write a computer program to determine that cloister, i.e. to calculate the biggest possible N that makes the serial numbers of these books valid. Obviously, no cloister has chosen $N=1$. So if your calculations yield $N=1$, there must be something wrong.

Input

Input starts with an integer t on a single line, the number of test cases $(1 \leq t \leq 100)$. Each test case starts with an integer c on a single line, the number of serial numbers you have to consider $(2 \leq c \leq 1000)$. Each of the following c lines holds 10 integer numbers $a_{1}, a_{2}, \ldots, a_{10}\left(0 \leq a_{i}<2^{28}\right)$ separated by single spaces.

Output

For each test case, output a single line containing the largest possible N, so that each given serial number for that test case is valid. If you cannot nd a $N>1$ satisfying the condition for all serial numbers or if the numbers are valid independent of the choice of N, output 'impossible' (without the quotes) on a single line.

Sample Input

4

2
$\begin{array}{llllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 9\end{array}$
$\begin{array}{lllllllll}2 & 4 & 6 & 8 & 10 & 12 & 14 & 18 & 90\end{array}$
3
$\begin{array}{llllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
5472642132
1234567895
2
$\begin{array}{llllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
1111111110
2
2222222220
$\begin{array}{llllllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$

Sample Output

impossible
8
impossible
2

