ACRush is very famous in Supercoder. Supercoder is a professional company which arranges online algorithmic contests and rates peoples based on those contests. In Supercoder algorithm contest ranklist, ACRush is ranked third. Now a days he is doing some analysis on his rating history in Supercoder algorithm contest. In Supercoder, an algorithm contest is termed as a Single Round Tournament (SRT). After each SRT is finished, rating of a contestant is updated according to his/her relative performance. ACRush collected all these rating information, and using those he created a line chart.

To make things more clear, let us consider the following table as his rating info.

SRT	Rating
320	3
306	1
401	3
325	4
393	5
380	2

From this table, we see that his first SRT was SRT\#306, and rating after that SRT was 1 , so he marked point $(1,1)$ as r_{1} in graph paper, his second SRT was SRT\#320 and rating after that SRT was 3 , so he marked $(2,3)$ as r_{2}, then he add r_{1} with r_{2} by a straight line and so on.

In general for his i-th SRT he marked point (i, rating after i-th SRT) by r_{i}.
After marking all the points he will add point r_{i} with r_{i-1} by straight lines, for all $1<i \leq N$, Where N is the total number of SRTs he played. For better idea look at figure 1:

Fig 1: Line chart cosidering all SRTs

Fig 2: Line chart ignoring SRT \#380

After drawing line chart, he became very interested about the number of peaks. There are two kinds of peaks in a line chart, 1) Upper Peak and 2) Lower Peak. Upper Peak is that point in a line chart whose previous and next point has smaller y coordinates and lower peak is that points in a line chart whose previous and next point has greater y coordinates. For example total number of peak in figure 1 is 3 . Two of them upper peak, which are $(3,4)$ and $(5,5)$, and one of them is lower peak which is $(4,2)$.

ACRush observed that by ignoring SRT $\# 380$, his line chart will become like figure 2 , in which number of peak is only 1. By observing this he became more curious. Now he wants to know, by ignoring 0 or more SRTs how many distinct line charts having K peaks is possible. ACRush calls these line charts K-peak Line charts, in a K-peak line chart he doesn't allow two consecutive points to have same y coordinate.

Input

Input will start with an integer $T(T \leq 12)$, which indicates the number of test cases. Each case starts with a line having two integers $N(1 \leq N \leq 10000)$ and $K(0 \leq K \leq 50)$. Each of the next N lines will contain two integers $S R T(1 \leq S R T \leq 1000000000)$ and Rating $(1 \leq$ Rating $\leq 1000000000)$. All the $S R T$ numbers will be distinct.

Output

For Each test case output a single Line 'Case \#: W^{\prime}, here \# will be replaced by case number and W will be replaced by the number of distinct K-peak line charts modulo 1000000 .

Sample Input

Sample Output

Case 1: 20
Case 2: 1
Case 3: 8

