You recently started working for the largest map drawing company in the Netherlands. Part of your job is to determine what the summits in a particular landscape are. Unfortunately, it is not so easy to determine which points are summits and which are not, because we do not want to call a small hump a summit. For example look at the landscape given by the sample input.

We call the points of height 3 summits, since there are no higher points. But although the points of height 2 , which are to the left of the summit of height 3 , are all higher than or equal to their immediate neighbours, we do not want to call them summits, because we can reach a higher point from them without going to low (the summits of height 3). In contrast, we do want to call the area of height 2 on the right a summit, since if we would want to walk to the summit of height 3 , we first have to descend to a point with height 0 .

After the above example, we introduce the concept of a d-summit. A point, with height h, is a d-summit if and only if it is impossible to reach a higher point without going through an area with height smaller than or equal to $h-d$.

The problem is, given a rectangular grid of integer heights and an integer d, to find the number of d-summits.

Input

On the first line one positive number: the number of testcases, at most 100. After that per testcase:

- One line with three integers $1 \leq h \leq 500,1 \leq w \leq 500$ and $1 \leq d \leq 1000000000 . h$ and w are the dimensions of the map. d is as defined in the text.
- h lines with w integers, where the x-th integer on the y-th line denotes the height $0 \leq h \leq$ 1000000000 of the point (x, y).

Output

Per testcase:

- One line with the number of summits.

Sample Input

1

6102
0000000000
$\begin{array}{llllllllll}0 & 1 & 2 & 1 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$
0212131000
01121331100
02121111020
0000000000

Sample Output

4

