
Fig 1. The iceman in the
room

Iceman was in a room in Iceland. He wants to get out of it, but it’s not as
easy as it seems. To help him, you need to know something about Iceland
and Iceman.

The room could be described by an n × m grid, so there are n rows
numbered 1 to n from top to bottom, each with m squares numbered 1 to
m from left to right. Each square may be empty, icy or rocky. An empty
square is denoted by ‘.’, while a rocky square is denoted by ‘X’. Ice squares
are a bit complex, so we talk about it later. The first and last rows and
columns are all rocky. The iceman’s initial location is always an empty
square at the beginning, denoted by ‘@’. His destination is also empty
at the beginning, denoted by ‘#’. What’s more, the destination is always
directly above a rocky square. Though the iceman looks bigger than a
square, he always occupies exactly one single empty square.

The iceman has four kinds of moves: go left (L), go right (R), magic wind left (<) and magic wind
right (>). Suppose the iceman is at (r, c), then ‘<’ move operates on the iceman’s bottom-left square
(r+1, c−1). If the square is rocky, the move does nothing; if the square is empty, it becomes icy; if the
square is icy, it becomes empty. There are four kinds of icy squares: ice with two free-ends (O), ice with
left free-end ([), ice with right free-end (]), ice with no free-end (=). Here ‘free’ means ‘not connected’.
If an icy square is created by a magic-wind move, it connects to its left/right neighbor, provided the
corresponding neighboring square is not empty (rocky or icy). The connections between neighboring
squares are symmetric, so squares that are connected to each other behave as a whole. Connections
could be created only by magic moves, and there are no vertical connections. We call the whole an ice
bar. If an icy bar (no matter how many squares does it contain) has two free ends, we call it a free
ice bar. Free ice bars immediate drop down vertically when all its supporting squares (squares directly
below it) are empty. When an icy square is cleared, all connections of it (if any) are destroyed. Because
rocky squares are fixed, if an ice bar connects to one or two rocky squares, it never drops down until
its connections to rocky squares are all destroyed. The ‘>’ move is symmetrical.

The ‘L’ move is a little bit complex, compared to what you might expect. Again, suppose the
iceman is located at (r, c). If (r, c− 1) is an empty square, the iceman go there. Now he stands on the
square (r+ 1, c− 1), which might be empty. If this is true, he falls down until the square under him is
not empty. The iceman can launch a move only when he’s standing on a rocky or icy square, so when
falling down, he cannot do anything. Now consider the second case, i.e. (r, c − 1) is rocky. Obviously
the iceman cannot move to that square, so he checks the square above it and the square above himself
(i.e the squares (r− 1, c− 1) and (r− 1, c)). If both are empty, he climbs to (r− 1, c− 1), otherwise he
remains at (r, c). The third and last case holds when (r, c− 1) is icy. In this case, the iceman tries to
push it. The Iceman is not so powerful, so he can only push single (1× 1) icy squares. That is, if only
if (r, c− 2) is empty, the ice at (r, c− 1) is pushed left. It continues to move left until it is blocked by
a rocky or icy square, or the square directly below is empty. In the latter case, the ice drops down, as
stated before. Note that when stopped dropping, the ice does not move left again. Don’t forget that
when the ice is pushed away successfully, some free ice bars may drop down. The iceman does not move
until everything stopped moving or dropping. If the ice at (r, c− 1) cannot be pushed, it is treated as
a rocky square, so the iceman may climb on it.

Write a program to move the iceman to the destination with minimum number of moves.

Input

The input consists of several test cases. The first line of each case contains two integers, n and m
(1 ≤ n,m ≤ 10). This is followed by n lines, each containing m characters. Each character is one of
‘.’, ‘X’, ‘@’, ‘#’, ‘O’, ‘[’, ‘]’, ‘=’. The last test case is followed by a single zero, which should not be
processed.

Output

For each test case, print the case number and the move sequence. There is always a solution of at most
15 moves. It is guaranteed that the optimal solution is unique.

Sample Input

55

XXXXX

X@.#X

XX.XX

X...X

XXXXX

77

XXXXXXX

X.....X

X@[=].X

XXX.XXX

XXX.XXX

XXX#XXX

XXXXXXX

66

XXXXXX

X@...X

XXXX=X

X..O.X

X.#O.X

XXXXXX

0

Sample Output

Case 1: >RR

Case 2: R>R

Case 3: RR>RLLLLL>R

