The harmonic mean $\left(H_{N}\right)$ of N numbers $a_{1}, a_{2}, a_{3} \ldots a_{N-1}, a_{N}$ is defined as below:

$$
H_{N}=\frac{N}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+\ldots+\frac{1}{a_{N-1}}+\frac{1}{a_{N}}}
$$

So the harmonic mean of four numbers a, b, c, d is defined as

$$
H_{4}=\frac{4}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}
$$

In this problem your job is very simple: given $N(0<N<$ $9)$ integers you will have to find their harmonic mean.

Input

The first line of the input file contains an integer $S(0<S<501)$, which indicates how many sets of inputs are there. Each of the next S lines contains one set of input. The description of each set is given below:

Each set starts with an integer $N(0<N<9)$, which indicates how many numbers are there in this set. This number is followed by N integers $a_{1}, a_{2}, a_{3} \ldots a_{N-1}, a_{N}\left(0<a_{i}<101\right)$.

Output

For each set of input produce one line of output. This line contains the serial of output followed by two integers m and n separated by a front slash. These two numbers actually indicate that the harmonic mean of the given four numbers is $\frac{m}{n}$. You must ensure that $\operatorname{gcd}(m, n)=1$ or in other words m and n must be relative prime. The value of m and n will fit into a 64 -bit signed integer.

Sample Input

2

41234
42231

Sample Output

Case 1: 48/25
Case 2: 12/7

