Permutations of a sequence of decimal digits have an interesting property. Any two permutations of a sequence of digits have a difference, which is divisible by 9 . Quite interesting, isn't it? For example:

$$
|458967-456879|=2088=9 * 232
$$

We won't ask for the proof today (as it is very easy) but we will focus towards a different aspect of this property. There are some numbers whose difference with one (or more) of its permutation is of the form 9 p , where p is a prime less than 1111111. These numbers are called permutation primes. For example $\mathbf{9 2 - 2 9}=\mathbf{6 3}=\mathbf{9}^{*} \mathbf{7}$, where $\mathbf{7}$ is a prime. So 92 is a permutation prime. Now you have to write a program that finds out how many permutation primes are there within a specified range.

Input

First line of input contains an integer $T(0<T<51)$ denoting the number of test cases to follow. Then follows T lines each of which contains two positive integers p and q. Both of them are less than 99999999, without any leading zero(s) and $|p-q| \leq 1000$.

Output

There will be one line of output for each test case. At first print 'Case i : ' (without the quotes) where i is an integer denoting the i-th test case starting from one. Then the line will contain an integer N that denotes the number of permutation primes between p and q (inclusive).

Sample Input

2
110
120

Sample Output

Case 1: 0
Case 2: 5

