We are familiar with the Fibonacci sequence $(1,1,2,3,5,8, \ldots)$. What if we define a similar sequence for strings? Sounds interesting? Let's see.

We define the follwing sequence:
$\operatorname{BFS}(0)=0 \operatorname{BFS}(1)=1$ (here " 0 " and " 1 " are strings, not simply the numerical digit, 0 or 1)
for all $(n>1) \operatorname{BFS}(n)=\operatorname{BFS}(n-2)+\operatorname{BFS}(n-1)$ (here, ' + ' denotes the string concatenation operation). (i.e. the n-th string in this sequence is a concatenation of a previous two strings).

So, the first few strings of this sequence are: $0,1,01,101,01101$, and so on.
Your task is to find the N-th string of the sequence and print all of its characters from the i-th to j-th position, inclusive. (All of N, i, j are 0 -based indices)

Input

The first line of the input file contains an integer $T(T \leq 100)$ which denotes the total number of test cases. The description of each test case is given below:

Three integers $N, i, j\left(0 \leq N, i, j \leq 2^{31}-1\right)$ and ($i \leq j$ and $j-i \leq 10000$). You can assume that, both i and j will be valid indices (i.e. $0 \leq i, j<$ length of $B F S(N)$).

Output

For each test case, print the substring from the i-th to the j-th position of $B F S(N)$ in a single line.

Sample Input

3
312
100
9512

Sample Output

01
1
10101101

