Consider a grid of size $\mathrm{n} \times \mathrm{n}$ where each cell contains a number. Let's call a grid stable if we can rearrange the numbers of each row so that every column of the resulting grid has no repeated values.

Mathematically, say, we have a grid G of size $n \times n$. We would like to permute the elements of each row $G_{i}(1 \leq i \leq n)$ so that the resulting grid has the following property:

For every column j, the values $G_{i, j}$ are all distinct for $(1 \leq i \leq n)$.
As an example, consider a grid G of size 4×4 as shown below

2	1	1	3
3	1	2	6
2	6	10	3
9	8	7	6

We can permute each row to get G^{\prime} as shown below

2	1	1	3
1	3	6	2
6	2	3	10
9	8	7	6

In G^{\prime}, there are no repeated values in any column. So, the given grid is stable.
In this problem, you will be given a grid of size $n \times n$ and you have to determine whether it is stable or not.

Input

Input starts with an integer $T(\leq 500)$, denoting the number of test cases.
Each case starts with a line containing the value of $n(0<n<100)$. The next n lines contain n integers each. The j-th integer of the i-th line represent the value of $G_{i, j}$. Consecutive integers in each line are separated with space characters. All the integers in the grid are non-negative with magnitude not greater than 100 .

Output

For each case, output the case number first. If the given grid is stable, output 'yes' otherwise output 'no'. Look at the samples for exact format.

Sample Input

3
4
2113
3126
26103
9876
3
112
111
222
3
123
231
312

Sample Output

Case 1: yes
Case 2: no
Case 3: yes

