Working in a boutique folding and putting in order T-shirts according to their sizes seems very easy. But is it really so simple?

Given n objects of different sizes, how many different arrangements can be done using relationships ' i ' and ' $=$ '?

For instance, with 2 objects, A and B , we have 3 possible arrangements:
$\mathrm{A}=\mathrm{B} \quad \mathrm{A}_{\mathrm{i}} \mathrm{B} \quad \mathrm{B}_{\mathrm{j}} \mathrm{A}$
With 3 objects, A, B and C , you must conclude that 13 different arrangements exist:
$\mathrm{A}=\mathrm{B}=\mathrm{C} \quad \mathrm{A}=\mathrm{B}_{j} \mathrm{C} \quad \mathrm{A}_{j} \mathrm{~B}=\mathrm{C} \quad \mathrm{A}_{j} \mathrm{~B} \mathrm{~B}_{j} \mathrm{C} \quad \mathrm{A}_{j} \mathrm{C}_{j} \mathrm{~B} \quad \mathrm{~A}=\mathrm{C}_{j} \mathrm{~B} \quad \mathrm{~B}_{j} \mathrm{~A}=\mathrm{C} \quad \mathrm{B}_{j} \mathrm{~A}_{j} \mathrm{C} \quad \mathrm{B}_{j} \mathrm{C}_{j} \mathrm{~A} \quad \mathrm{~B}=\mathrm{C}_{j} \mathrm{~A} \quad \mathrm{C}_{j} \mathrm{~A}=\mathrm{B} \quad \mathrm{C}_{j} \mathrm{~A}_{j} \mathrm{~B}$ $\mathrm{C}_{\mathrm{i}} \mathrm{B} ; \mathrm{A}$

Input

The first line of the input contains an integer, t, indicating the number of test cases. For each test case, one line appears, that contains a number $n, 1 \leq n \leq 11$, representing the number of objects.

Output

For each test case, the output should contain a single line with the number representing the different arrangements you can do with n objects.

Sample Input

4
1
2
3
4

Sample Output

1
3
13
75

