Write a program to transform an array $A[1], A[2], \ldots, A[n]$ according to m instructions. Each instruction (L, R, v, p) means: First, calculate how many numbers from $A[L]$ to $A[R]$ (inclusive) are strictly less than v, call this answer k. Then, change the value of $A[p]$ to $u * k /(R-L+1)$, here we use integer division (i.e. ignoring fractional part).

Input

The first line of input contains three integer n, $m, u(1 \leq n \leq 300,000,1 \leq m \leq 50,000,1 \leq u \leq$ $1,000,000,000)$. Each of the next n lines contains an integer $A[i](1 \leq A[i] \leq u)$. Each of the next m lines contains an instruction consisting of four integers $L, R, v, p(1 \leq L \leq R \leq n, 1 \leq v \leq u$, $1 \leq p \leq n)$.

Output

Print n lines, one for each integer, the final array.

Sample Input

10111
1

Sample Output

Explanation: There is only one instruction: $L=2, R=8, v=6, p=10$. There are 4 numbers $(2,3,4,5)$ less than 6 , so $k=4$. The new number in $A[10]$ is $11 * 4 /(8-2+1)=44 / 7=6$.

