Consider a sequence of n integers $<1234 \ldots n>$. Since all the values are distinct, we know that there are n factorial permutations. A permutation is called \boldsymbol{K}-transformed if the absolute difference between the original position and the new position of every element is at most K.

Given n and K, you have to find out the total number of \boldsymbol{K}-transformed permutations.
Example: $n=4, K=2$

	1234 (position)	Valid	Annotation
P_{1}	1234	Yes	The original sequence. All the elements are in their original position
P_{2}	1243	Yes	3 and 4 are reordered, but each is shifted by 1 position only.
P_{3}	1324	Yes	
P_{4}	1342	Yes	2 is shifted by 2 positions. $2 \leq K$, so it's a valid one.
P_{5}	1423	Yes	
P_{6}	1432	Yes	
P_{7}	2134	Yes	
P_{8}	2143	Yes	
P_{9}	2314	Yes	
P_{10}	2341	No	1 is shifted by 3 positions. $3>K$ and so this is an invalid permutation
P_{11}	2413	Yes	
P_{12}	2431	No	
P_{13}	3124	Yes	
P_{14}	3142	Yes	
P_{15}	3214	Yes	
P_{16}	3241	No	
P_{17}	3412	Yes	
P_{18}	3421	No	
P_{19}	4123	No	4 is shifted by 3 positions. $3>K$ and so this is also invalid
P_{20}	4132	No	
P_{21}	4213	No	
P_{22}	4231	No	
P_{23}	4312	No	
P_{24}	4321	No	Here, both 4 and 1 are breaking the property.

So, for the above case, there are 14 2-transformed permutations.

Input

The first line of input is an integer $T(T<20)$ that indicates the number of test cases. Each case consists of a line containing two integers n and $K .\left(1 \leq n \leq 10^{9}\right)$ and $(0 \leq K \leq 3)$.

Output

For each case, output the case number first followed by the required result. Since the result could be huge, output result modulo 73405 .

Sample Input

3
42
1000
101

Sample Output

Case 1: 14
Case 2: 1
Case 3: 89

