
12054 Find the project
The job market is not holding a
good prospect for Computer Sci-
ence graduates lately. As a result
a lot of CS graduates here are ei-
ther going for MBA or looking for
a job, which is not quite related
to their field of study. Turza, a
fresh CS graduate is one such ex-
ample. He with his sound knowl-
edge of CS could not find a sin-
gle job where he could make use of
what he knows. He ends up getting
a job of project supervision, which
is basically keeping track if the parts of the project are being completed according to the schedule.
What a waste of four years’ hard work!

A guy has to earn his living and we all understand that. But there should also be some sort
of satisfaction in the job. That’s what Turza is trying to find now. He is desperately searching for
something interesting in his work. But the only interesting thing for him is mathematical problems.
Fortunately for Turza, he has been able to create and solve one math problem from his not so interesting
work. We would like to leave it for you to see if you can do it too. He says:

“The project I supervise has many parts. Some of the parts are dependent on other parts.
So if part X is dependent on part Y and Z, we’d have to make sure that both part Y and Z
is finished before we start working on part X. For some strange reason which I really
don’t have any clue to, here we must finish all the parts that are currently not
dependent on any other parts. Once all these parts are completed, we proceed
on to completing the other parts following the same rule. It is fairly easy to
calculate how many ways are there that this entire project can be completed. However, I
am more interested in the solution of the inverse problem. Given the number of parts we
have in a project and the number of ways that the project can be completed (if we follow
the procedure I just explained) can you find the dependency list of the parts in the project?
It is quite obvious that the answer need not be unique, so any valid answers would do.”

If we want to calculate the number of ways to finish a project the number can get quite big, even if
the number of parts in the project is not so large. So here we prefer to use the prime factorized form
for the count. You can safely assume that for every count and number of parts we give you, there is
at least one project that they correspond to. Your task is simply to find one such project and list the
dependency among the parts.

Input
The first line of the input gives you the number of test cases, T (T ≤ 20). Then you would have the
description of T test cases. Every test case starts with two integers in one line. The first integer N
(1 ≤ N ≤ 50) is the total number of parts in the project. The next integer is the number of primes,
P (P ≤ N) in the prime factorization of the count (the number of ways to complete the project). In



Universidad de Valladolid OJ: 12054 – Find the project 2/2

the next P lines P pairs are listed. The first number in each pair is the prime number and the second
number is the number of times it occurs in the count.

Please note that we only list a prime number if it occurs nonzero times in the count.

Output
For each of the test cases you have to print the serial number of the test case in the format ‘Case#x:’
where x is the serial number starting from 1. In the next N lines you have to list the dependency list
for each of the projects. The i-th dependency list starts with an integer which gives us the number of
parts that depenedent on the i-th part. Then we would have the labels of that many parts on the same
line. These labels are integers in the range 1 to N and should be separated by a single space. There is
a special judge for this problem which will take your project as input and check if we can indeed reach
that count. Please note that your project description must not be such as to mean that it is impossible
to finish the project. And you must not mention a dependency more than once.

Illustration:

Sample Input
2
3 1
2 1
5 2
2 1
3 1

Sample Output
Case#1:
1 3
1 3
0
Case#2:
3 2 3 4
0
1 5
0
0


