
Imagine you are a tourist in Warsaw and have booked a bus tour to see some amazing attraction just
outside of town. The bus first drives around town for a while (a long while, since Warsaw is a big city)
picking up people at their respective hotels. It then proceeds to the amazing attraction, and after a
few hours goes back into the city, again driving to each hotel, this time to drop people off.

For some reason, whenever you do this, your hotel is always the first to be visited for pickup, and the
last to be visited for dropoff, meaning that you have to suffer through two not-so-amazing sightseeing
tours of all the local hotels. This is clearly not what you want to do (unless for some reason you are
really into hotels), so let’s fix it. We will develop some software to enable the sightseeing company to
route its bus tours more fairly—though it may sometimes mean longer total distance for everyone, but
fair is fair, right?

For this problem, there is a starting location (the sightseeing company headquarters), h hotels that
need to be visited for pickups and dropoffs, and a destination location (the amazing attraction). We
need to find a route that goes from the headquarters, through all the hotels, to the attraction, then
back through all the hotels again (possibly in a different order), and finally back to the headquarters.
In order to guarantee that none of the tourists (and, in particular, you) are forced to suffer through
two full tours of the hotels, we require that every hotel that is visited among the first ⌊h/2⌋ hotels
on the way to the attraction is also visited among the first ⌊h/2⌋ hotels on the way back. Subject
to these restrictions, we would like to make the complete bus tour as short as possible. Note that
these restrictions may force the bus to drive past a hotel without stopping there (this is not considered
visiting) and then visit it later, as illustrated in the first sample input.

Input

The first line of each test case consists of two integers n and m satisfying 3 ≤ n ≤ 20 and 2 ≤ m,
where n is the number of locations (hotels, headquarters, attraction) and m is the number of pairs of
locations between which the bus can travel.

The n different locations are numbered from 0 to n − 1, where 0 is the headquarters, 1 through
n − 2 are the hotels, and n − 1 is the attraction. Assume that there is at most one direct connection
between any pair of locations and it is possible to travel from any location to any other location (but
not necessarily directly).

Following the first line are m lines, each containing three integers u, v, and t such that 0 ≤ u, v ≤
n − 1, u ̸= v, 1 ≤ t ≤ 3600, indicating that the bus can go directly between locations u and v in t
seconds (in either direction).

Output

For each test case, display the case number and the time in seconds of the shortest possible tour.

Sample Input

5 4

0 1 10

1 2 20

2 3 30

3 4 40

4 6

0 1 1

0 2 1

0 3 1

1 2 1

1 3 1

2 3 1

Sample Output

Case 1: 300

Case 2: 6


