Shoulder-surfing is the behavior of intentionally and stealthily watching the screen of another person's electronic device, such as laptop computer or mobile phone. Since mobile devices prevail, it is getting serious to steal personal information by shoulder-surfing. his is very vulnerable since a shoulder-surfer easily knows what we have typed. So it is desirable to conceal the input information to discourage shoulder-surfers around us. Let me explain one way to do his.
You are given a 6×5 grid. Each column can be considered the visible part of a wheel. So you can esily rotate each column wheel independently to make password characters visible. In this problem, we assume that each wheel contains the 26 upper letters of English alphabet.

Figure 1.6×5 window clips a valid grid representation for a password
Assume that we have a length- 5 password such as $p_{1} p_{2} p_{3} p_{4} p_{5}$. In order to pass the authentication A of the grid. In that situation we say that the user password is accepted.

Let me start with one example. Suppose that our password was set 'COMPU'. If we construct the grid as shown in Figure 2 on nex page, then the authentication is successfully processed
each column is mem, the position of each password charac $p_{2} p_{3} p_{4} p_{5}$ appears in the corresponding column, that can be $p_{1} p_{2} p_{3} p_{4} p_{5}$ appears in the corresponding column, that can be
considered the correct password. So there are many grid configurations allowing one password. Note that the sequence of letters on each wheel is randomly determined for each trial and for each column. In practice, the user is able to rotate each column and press "Enter" key, so a should-surfer cannot perceive the password by observing the 6×5 grid since there are too many password can-
didates. In this 6×5 grid space, maximally $6^{5}=7,776$ cases are possible. This is the basic idea of the proposed password system against shoulder-surfers. 'COMPU
Unfortunately there is a problem. If a shoulder-surfer can observe more than two grid plate configurations for a person, then the shoulder-surfer can reduce the searching space and guess the correct password. Even though it is not easy to stealthily observe other's more than once, this is one weakness of implicit grid passwords.
Let me show one example with two observed configurations for a grid password. The user password 'COMPU', but 'DPMAG' is also one candidate password derived from the following configuration

A	Y	G	S	U
D	O	M	R	A
C	P	F	A	S
X	B	O	D	G
W	D	Y	P	K
P	R	X	W	O

C	B	O	P	T
D	O	S	B	G
G	T	R	A	R
A	P	M	M	S
W	S	X	N	U
E	F	G	H	I

Figure 3. Both of 'COMPU' and 'DPMAG' are feasible password
You are given two configurations of grid password from a shoulder-surfer. Suppose that you have exceeded to stealthily record snapshots of the target person's device (e.g. smart phone). Then your password candidates, you are asked for the k-th password among all candidates in lexicographical order. In Figure 3, let us show the first 5 valid password. The first 5 valid passwords are 'ABGAG', 'ABGAS', 'ABGAU', 'ABGPG' and 'ABGPS
The number k is given in each test case differently. If there does not exist a k-th password since k is larger than the number of all possible passwords, then you should print ' NO ' in the output.

Input
Your program is to read from standard input. The input consists of T test cases. The number of test cases T is given in the first line of the input. The first line of each test case contains one integer, K,
the order of the password you should find. Note that $1 \leq K \leq 7,777$. Next the following 6 lines show the 6 rows of the first grid and another 6 lines represent the 6 rows of the second grid.

Output

Your program is to write to standard output. Print exactly the k-th password (including 'No') in one ner each test case.
The following shows sample input and output for three test cases.

Sample Input

