Many well-known cryptographic operations require modular exponentiation. That is, given integers x, y and n, compute $x^{y} \bmod n$. In this question, you are tasked to program an efficient way to execute this calculation.

Input

The input consists of a line containing the number c of datasets, followed by c datasets, followed by a line containing the number ' 0 '.

Each dataset consists of a single line containing three positive integers, x, y, and n, separated by blanks. You can assume that $1<x, n<2^{15}=32768$, and $0<y<2^{31}=2147483648$.

Output

The output consists of one line for each dataset. The i-th line contains a single positive integer z such that

$$
z=x^{y} \bmod n
$$

for the numbers x, y, z given in the i-th input dataset.

Sample Input

2
235
2214748364713
0

Sample Output

3
11

