A positive integer may be expressed as a sum of different prime numbers (primes), in one way or another. Given two positive integers n and k, you should count the number of ways to express n as a sum of k different primes. Here, two ways are considered to be the same if they sum up the same set of the primes. For example, 8 can be expressed as $3+5$ and $5+3$ but they are not distinguished.

When n and k are 24 and 3 respectively, the answer is two because there are two sets $\{2,3,19\}$ and $\{2,5,17\}$ whose sums are equal to 24 . There are no other sets of three primes that sum up to 24 . For $n=24$ and $k=2$, the answer is three, because there are three sets $\{5,19\},\{7,17\}$ and $\{11,13\}$. For $n=2$ and $k=1$, the answer is one, because there is only one set $\{2\}$ whose sum is 2 . For $n=1$ and $k=1$, the answer is zero. As 1 is not a prime, you shouldn't count $\{1\}$. For $n=4$ and $k=2$, the answer is zero, because there are no sets of two different primes whose sums are 4.

Your job is to write a program that reports the number of such ways for the given n and k.

Input

The input is a sequence of datasets followed by a line containing two zeros separated by a space. A dataset is a line containing two positive integers n and k separated by a space. You may assume that $n \leq 1120$ and $k \leq 14$.

Output

The output should be composed of lines, each corresponding to an input dataset. An output line should contain one non-negative integer indicating the number of ways for n and k specified in the corresponding dataset. You may assume that it is less than 2^{31}.

Sample Input

243
242
21
11
42
183
171
173
174
1005
100010
112014
00

Sample Output

