Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:

Deletion: a letter in x is missing in y at a corresponding position.
Insertion: a letter in y is missing in x at a corresponding position.
Change: letters at corresponding positions are distinct
Certainly, we would like to minimize the number of all possible operations.

Illustration

A	G	T	A	A	G	T	$*$	A	G	G	C
I	I	I				I		\|		I	I
A	G	T	$*$	C	$*$	T	G	A	C	G	C

Deletion: * in the bottom line
Insertion: * in the top line
Change: when the letters at the top and bottom are distinct
This tells us that to transform $x=$ AGTCTGACGC into $y=$ AGTAAGTAGGC we could be required to perform 5 operations (2 changes, 2 deletions and 1 insertion).

If we want to minimize the number operations, we should do it like

A	G	T	A	A	G	T	A	G	G	C
I	I	I			I		I		I	I
A	G	T	C	T	G	$*$	A	C	G	C

and 4 moves would be required (3 changes and 1 deletion).
In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where $n \geq m$.

Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.

Write a program that would minimize the number of possible operations to transform any string x into a string y.

Input

Input contains several datasets. Each dataset consists of the strings x and y prefixed by their respective lengths, one in each line.

Output

For each dataset, an integer representing the minimum number of possible operations to transform any string x into a string y.

Sample Input

10 AGTCTGACGC
11 AGTAAGTAGGC

Sample Output

