
I love a game series called “Wario Land”, so I’d like to make a very difficult (indeed!!!)

problem about it :) A big thank you goes to Erjin Zhou, for the idea and reference code. And

a small thank you goes to Wenbin Tang, for reminding me that “Rujia Liu” also contains

the letter L!

Suppose there are n places in the very beginning of Wario Land. The land was almost deprecated,
so it does not have any roads at all! You’ll be given m operations. Execute them one by one, and
output the results.

1 x y Wario wants to build a direct road between place x and y. If x and y are
already connected (directly or indirectly), ignore this command (because
Wario thinks it’s a waste of time!).

2 x y Change place x’s treasure value to v. This is due to newly discovered
treasures, or treasures that are stolen by someone else.

3 x y v Among the places along the path between x and y (including x and y), how
many of them have treasure value ≤ v? Wario also needs the product of
these treasure values, modulo k (see below).

Input

The input contains several test cases. In each test case, the first line contains three integers n, m, k
(1 ≤ n ≤ 50, 000, 1 ≤ m ≤ 100, 000, 2 ≤ k ≤ 33333). Places are numbered from 1 to n. The second
line contains n integers V [i] (1 ≤ V [i] ≤ k), the initial treasure values of each place. Each of the next
m lines contains an operation. For each operation, 1 ≤ x, y ≤ n, 1 ≤ v ≤ k. The input is terminated
by end-of-file (EOF).

Output

For each type-3 operation, output the number of places and the product of their treasure values, modulo
k. If there is no path between x and y, or every place along the path has treasure value > v, output a
single ‘0’ (rather than ‘0 0’ or ‘0 1’).

Obfuscation
In order to prevent you from preprocessing the operations, we adopt the following obfuscation

scheme:

Each type-1 operation becomes 1 x+ d y + d
Each type-2 operation becomes 2 x+ d v + d
Each type-3 operation becomes 3 x+ d y + d v + d

Where d is the last integer that you output, before processing this operation. If you haven’t output
anything yet, d = 0.

After the obfuscation, the sample input would be:

4 8 39

2 3 4 5

1 1 2

3 2 3 5

1 1 3

3 2 3 5

1 25 28

3 27 28 28

3 11 12 13

3 4 5 2

This is the real input that your program will read.

Sample Input

4 8 39

2 3 4 5

1 1 2

3 2 3 5

1 1 3

3 2 3 5

1 1 4

3 3 4 4

3 3 4 5

3 3 4 1

Sample Output

0

3 24

2 8

3 1

0


