
I hope you know the beautiful Union-Find structure. In this problem, you’re to implement something
similar, but not identical.

The data structure you need to write is also a collection of disjoint sets, supporting 3 operations:

1 p q Union the sets containing p and q. If p and q are already in the same set,
ignore this command.

2 p q Move p to the set containing q. If p and q are already in the same set,
ignore this command.

3 p Return the number of elements and the sum of elements in the set contain-
ing p.

Initially, the collection contains n sets: {1}, {2}, {3}, . . . , {n}.

Input

There are several test cases. Each test case begins with a line containing two integers n and m
(1 ≤ n,m ≤ 100, 000), the number of integers, and the number of commands. Each of the next m lines
contains a command. For every operation, 1 ≤ p, q ≤ n. The input is terminated by end-of-file (EOF).

Output

For each type-3 command, output 2 integers: the number of elements and the sum of elements.

Explanation
Initially: {1}, {2}, {3}, {4}, {5}
Collection after operation 1 1 2: {1,2}, {3}, {4}, {5}
Collection after operation 2 3 4: {1,2}, {3,4}, {5} (we omit the empty set that is produced when
taking out 3 from {3})
Collection after operation 1 3 5: {1,2}, {3,4,5}
Collection after operation 2 4 1: {1,2,4}, {3,5}

Sample Input

5 7

1 1 2

2 3 4

1 3 5

3 4

2 4 1

3 4

3 3

Sample Output

3 12

3 7

2 8


