A set of integers is called prime independent if none of its member is a prime multiple of another member. An integer a is said to be a prime multiple of b if,

$$
a=b \times k \quad(\text { where } k \text { is a prime [1]) }
$$

So, 6 is a prime multiple of 2 , but 8 is not. And for example, $\{2,8,17\}$ is prime independent but $\{2,8,16\}$ or $\{3,6\}$ are not.

Now, given a set of distinct positive integers, calculate the largest prime independent subset.

Input

Input starts with an integer $T(\leq 25)$, denoting the number of test cases.
Each case starts with an integer $N(1 \leq N \leq 40000)$ denoting the size of the set. Next line contains N integers separated by a single space. Each of these N integers are distinct and between 1 and 500000 inclusive.

Output

For each case, print the case number and the size of the largest prime independent subset.

Notes:

1. An integer is said to be a prime if it's divisible by exactly two distinct integers. First few prime numbers are $2,3,5,7,11,13, \ldots$

Sample Input

3
5
2481632
5
23469
3
123

Sample Output

Case 1: 3
Case 2: 3
Case 3: 2

