You are given N integers in base- N each of them having exactly M digits (may be with some leading zeros). Two integers are called K-similar if they have the same digits in exactly K positions. For example 321 and 213 are 0 -similar. 3456 and 6453 are 2 -similar, 123 and 453 are 1-similar. You want to change these given N-integers in such a way that each pair of these integers are 0 -similar. To achieve this goal you can change the integers in several steps. In a single step you can change a single digit of a single integer by 1 (incrementing or decrementing). But you can't decrement if the digit is 0 or you can't increment if the digit is $N-1$.

You need to achieve your goal in minimum number of steps.

Input

Input starts with an integer $T(\leq 50)$, denoting the number of test cases.
Each case starts with a line containing two integers $N(2 \leq N \leq 2000)$ and $M(1 \leq M \leq 10)$. Each of the next N lines contains M integers between 0 and $N-1$ inclusive. These M integers form an M digit number in base N.

Output

For each case, print the case number and the minimal steps required to achieve your goal.

Sample Input

2
33
000
000
000
42
00
00
02
20

Sample Output

Case 1: 9
Case 2: 8

