The Sierpinski carpet is a typical plane fractal. The construction of it begins with a square. The square is cut into 9 congruent subsquares in a 3 -by- 3 grid, and the central subsquare is removed. The same procedure is then applied recursively to the remaining 8 subsquares, ad infinitum.

Let's call the first figure (single square) from which we begin carpet construction S_{0}, next figure (combined 8 squares) S_{1}, S_{2} figure is combined of 64 squares and so on.

Here is an example of full Sierpinski carpet $\left(S_{\infty}\right)$:

In this problem you will be given a point in the plain and you have to find the maximal figure S_{N} to which this point still belongs.

Input

The number of tests $T(T \leq 100)$ is given on the first line. Each of next T lines contains two floating point numbers cordinates $X(0<X<1)$ and $Y(0<Y<1)$ of a given point. Point's cordinates are given with maximal precision of 6 digits after decimal point.

Output

For each test case output a single line 'Case T : $\quad N$ '. Where T is the test case number (starting from 1) and N is the maximal index of figure S that point still belongs to. If point is in Sierpinski Carpet itself (S_{∞}) then N must be equal to ' -1 '.

Sample Input

2
0.1110 .111
0.1230 .123

Sample Output

Case 1: 10
Case 2: 1

