Everybody knows how to play tic-tac-toe. If accidentally you do not know the rules of this game, you can always consult Wikipedia.

In this problem we will use a slightly different version of tic-tac-toe. First, the game board is not limited to 3×3 cells, but considered infinite. Also in order to win a player must get not 3 but at least k noughts or crosses in a line (horizontal, vertical or diagonal).

In modified tic-tac-to version it is not so easy to determine a winner. So in this problem you will be given a list of turns performed by the players during the game and you need to determine the winner.

Input

There is a number of tests $T(T \leq 100)$ on the first line. Each test case is described by the two numbers $n k\left(n \leq 10^{5}, k \leq 5\right)$, where n stands for number of turns for both players and k for winning line size. Next line contains n pairs of signed 32 -bit integers $x y$ - coordinates of each players turn. All turns have been performed sequentially by both players and crosses have always started a game.

Output

For each test case output a single line 'Case $T: \quad S$ '. Where T is the test case number (starting from 1) and S is equal to 'crosses' or 'noughts' if one of them has a winning line. If nobody yet has won a game output 'none' and if both players have winning lines output 'error' for S.

Sample Input

2
32
001110
42
$00-10111-11$

Sample Output

Case 1: crosses
Case 2: error

