John likes mathematics a lot. His main passion is the binomial theorem. However it is rather hard to calculate binomial coefficients, so he decided to write a computer program that can expand any power of a sum into a sum of powers. Mathematically it can be written like this:

$$
(a+b)^{k}=x_{1} a^{k}+x_{2} a^{k-1} b+x_{3} a^{k-2} b^{2}+\ldots+x_{k+1} b^{k}
$$

where $x_{1 \ldots k+1}$ are binomial coefficients $x_{i}=C_{k}^{i}$.

Input

There is a number of tests $T(T \leq 100)$ on the first line. After T test follows. Each test is written on a single line in form of ' $(a+b)^{\wedge} k$ '. Where a and b are same variables names. Variables names are strings constructed from 'a'-'z' characters. And $k(1 \leq k \leq 50)$ is a power that you need to raise the sum. You can assume that there are no lines longer than 100 characters.

Output

For each test output a single line 'Case N : $\quad T$ '. Where N is the test number (starting from 1) and T is an expanded expression (see examples for clarification). By the way, you shouldn't output coefficients and powers equal to one.

Sample Input

3

$(a+b)^{\wedge} 1$
(alpha+omega) ^2
(acm+icpc) ^3

Sample Output

Case 1: a+b
Case 2: alpha^2+2*alpha*omega+omega^2
Case 3: acm^3+3*acm^2*icpc+3*acm*icpc^2+icpc^3

