We define the operation of splitting a binary number n into two numbers $a(n), b(n)$ as follows. Let $0 \leq i_{1}<i_{2}<$ $\ldots<i_{k}$ be the indices of the bits (with the least significant bit having index 0) in n that are 1 . Then the indices of the bits of $a(n)$ that are 1 are $i_{1}, i_{3}, i_{5}, \ldots$ and the indices of the bits of $b(n)$ that are 1 are $i_{2}, i_{4}, i_{6}, \ldots$

For example, if n is 110110101 in binary then, again in binary, we have $a=$ 010010001 and $b=100100100$.

Input

Each test case consists of a single integer n between 1 and $2^{31}-1$ written in standard decimal (base 10) format on a single line. Input is terminated by a line containing ' 0 ' which should not be processed.

Output

The output for each test case consists of a single line, containing the integers $a(n)$ and $b(n)$ separated by a single space. Both $a(n)$ and $b(n)$ should be written in decimal format.

Sample Input

6
7
13
0

Sample Output

24
52
94

