Consider a tuple $P_{1}, P_{2}, P_{3}, \ldots, P_{n}$. Now consider the following recurrence function.

- $F\left(P_{1}, P_{2}, P_{3}, \ldots, P_{n}\right)=0$ if any of the P_{i} is negative or the tuple P is not sorted in non-increasing order.
- $F\left(P_{1}, P_{2}, P_{3}, \ldots, P_{n}\right)=1$ if all of the P_{i} s is zero.
- $F\left(P_{1}, P_{2}, P_{3}, \ldots, P_{n}\right)=F\left(P_{1}-1, P_{2}, P_{3}, \ldots, P_{n}\right)+F\left(P_{1}, P_{2}-1, P_{3}, \ldots, P_{n}\right)+F\left(P_{1}, P_{2}, P_{3}-\right.$ $\left.1, \ldots, P_{n}\right)+F\left(P_{1}, P_{2}, P_{3}, \ldots, P_{n}-1\right)$ otherwise.

For example if n is 4 then the value
$F(4,3,2,-1)$ is 0 because the last parameter is negative.
$F(4,3,2,5)$ is 0 because the tuple is not sorted from the largest to smallest.
$F(3,3,2,1)=F(3,3,2,1)+F(4,2,2,1)+F(4,3,1,1)+F(4,3,2,0)$
$F(1,1,0,0)=F(0,1,0,0)+F(1,0,0,0)+F(1,1,-1,0)+F(1,1,0,-1)=2$
Given the tuple P your task is to calculate the value of $F\left(P_{1}, P_{2}, P_{3}, \ldots, P_{n}\right)$. The result can be very big so output the result $\bmod 1,000,000,009$ (this is a prime number).

Input

Input starts with an integer $T(T \leq 50)$, denoting the number of test cases.
Each test case consists of two lines. First line contains n. Second line contains n integers separated by a single space. These are the tuple $P . n$ is between 1 and 1000 inclusive. Each of the numbers in tuple P is between 1 and 1000 inclusive. P will be sorted in non-increasing order.

Output

For each test case output contains a line in the format 'Case x : $\quad R$ ' where x is the case number (starting from 1) and R is the value of $F\left(P_{1}, P_{2}, P_{3}, \ldots, P_{n}\right) \bmod 1,000,000,009$.

Sample Input

```
8
3
7 54
6
775 3 2 1
2
4
3
744
4
8755
5
77655
2
8
3
6 3 1
```


Sample Output

Case 1: 100100
Case 2: 398009117
Case 3: 9
Case 4: 25025
Case 5: 923714728
Case 6: 311516464
Case 7: 1430
Case 8: 315

