An experiment is being conducted to find out how different colonies of bacteria behave when they collide with each other. The individual colonies are placed on a large dish and the dish can be modeled in a 2D plane. Initially, each colony occupies a rectangular area (sides parallel to axis) and the sizes of these colonies grow with time. The growth of the colonies occurs in the following manner:

1. The x and y coordinate of the lower-left corner decrease.
2. The x coordinate of lower-right corner increases and the y coordinate decreases.
3. The x and y coordinate of upper-right corner increase.
4. The x coordinate of upper-left corner decreases and the y coordinate increases.

All the increments/decrements mentioned above occur at a constant rate r with respect to time. In this problem, you have to determine the smallest unit of time that elapses when there are at least two colonies that are not more than d distance apart. Here the distance refers to the shortest Euclidean distance between the rectangular areas occupied by the colonies.

Input

The first line of input will contain $T(\leq 100)$ denoting the number of cases.
Each case starts with an integer $n(2 \leq n \leq 50)$ denoting the number of colonies. Each of the next n lines contains 4 integers $x_{1} y_{1} x_{2} y_{2}\left(0 \leq x_{1}, y_{1}, x_{2}, y_{2} \leq 10000, x_{1}<x_{2}, y_{1}<y_{2}\right)$ where $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ denote the lower-left and upper-right corner of the colony respectively. Next line contains two integers, r and $d(1 \leq r, d \leq 50)$.

Output

For each case, print the case number and the desired result rounded to 3 places after the decimal point. If two colonies overlap or just touch each other, they are considered to be zero distance apart.

Sample Input

2
2
0011
3041
11
2
0011
0132
11

Sample Output

Case 1: 0.500
Case 2: 0.000

