Once upon an ancient time, a knight was preparing for the great battle in GridLand. The GridLand is divided into square grids. There are R horizontal and C vertical grids. Our particular knight in this case can always give an (M, N) move, i.e. he can move M squares horizontally and N squares vertically or he can move M squares vertically and N squares horizontally in a single move. In other words he can jump from square (a, b) to square (c, d) if and only if, either $(|a-c|=M$ and $|b-d|=N)$ or $(|a-c|=N$ and $|b-d|=M)$. However, some of the squares in the war field are filled with water. For a successful jump from one square to another, none of the squares should contain water. Now, the knight wants to have a tour in the war field to check if everything is alright or not. He will do the following:
a) He will start and end his tour in square $(0,0)$ but visit as many squares as he can.
b) For each square s_{i}, he counts the number k_{i} of distinct squares, from which he can reach s_{i} in one jump (satisfying the jumping condition). Then he marks the square as an even square if k_{i} is even or marks it odd if k_{i} is odd. The squares he cannot visit remain unmarked.
c) After coming back to square $(0,0)$ he counts the number of even and odd marked squares. He can visit a square more than once.

You, as an advisor of the knight, suggested that, he can do it without visiting all the squares, just by writing a program. So the knight told you to do so. He will check your result at the end of his visit.

Input

The first line of input will contain $T(\leq 50)$ denoting the number of cases.
Each case starts with four integers $R, C, M, N(1<R, C \leq 100,0 \leq M, N \leq 50, M+N>0)$. Next line contains an integer W ($0 \leq W<R * C$), which is the number of distinct grids containing water. Each of the next W lines contains a pair of integer $x_{i}, y_{i}\left(0 \leq x_{i}<R, 0 \leq y_{i}<C, x_{i}+y_{i}>0\right)$.

Output

For each case, print the case number and the number of even and odd marked squares.

Sample Input

2

3321
0
4412
2
33
11

Sample Output

Case 1: 80
Case 2: 410

