
Once upon an ancient time, a knight was preparing for the great battle in GridLand. The GridLand
is divided into square grids. There are R horizontal and C vertical grids. Our particular knight in
this case can always give an (M,N) move, i.e. he can move M squares horizontally and N squares
vertically or he can move M squares vertically and N squares horizontally in a single move. In other
words he can jump from square (a, b) to square (c, d) if and only if, either (|a− c| = M and |b−d| = N)
or (|a− c| = N and |b− d| = M). However, some of the squares in the war field are filled with water.
For a successful jump from one square to another, none of the squares should contain water. Now, the
knight wants to have a tour in the war field to check if everything is alright or not. He will do the
following:

a) He will start and end his tour in square (0, 0) but visit as many squares as he can.

b) For each square si, he counts the number ki of distinct squares, from which he can reach si in
one jump (satisfying the jumping condition). Then he marks the square as an even square if ki
is even or marks it odd if ki is odd. The squares he cannot visit remain unmarked.

c) After coming back to square (0, 0) he counts the number of even and odd marked squares. He
can visit a square more than once.

You, as an advisor of the knight, suggested that, he can do it without visiting all the squares, just
by writing a program. So the knight told you to do so. He will check your result at the end of his visit.

Input

The first line of input will contain T (≤ 50) denoting the number of cases.
Each case starts with four integers R, C, M , N (1 < R,C ≤ 100, 0 ≤ M,N ≤ 50, M + N > 0).

Next line contains an integer W (0 ≤ W < R ∗ C), which is the number of distinct grids containing
water. Each of the next W lines contains a pair of integer xi, yi (0 ≤ xi < R, 0 ≤ yi < C, xi + yi > 0).

Output

For each case, print the case number and the number of even and odd marked squares.

Sample Input

2

3 3 2 1

0

4 4 1 2

2

3 3

1 1

Sample Output

Case 1: 8 0

Case 2: 4 10

