In graph theory, a node X dominates a node Y if every path from the predefined start node to Y must go through X. If Y is not reachable from the start node then node Y does not have any dominator. By definition, every node reachable from the start node dominates itself. In this problem, you will be given a directed graph and you have to find the dominators of every node where the 0 -th node is the start node.

As an example, for the graph shown right, 3 dominates 4 since all the paths from 0 to 4 must pass through 3 . 1 doesn't dominate 3 since there is a path $0-2-3$ that doesn't include 1 .

Input

The first line of input will contain $T(\leq 100)$ denoting the number of cases.

Each case starts with an integer $N(0<N<100)$ that
 represents the number of nodes in the graph. The next N lines contain N integers each. If the j-th (0 based) integer of i-th (0 based) line is ' 1 ', it means that there is an edge from node i to node j and similarly a ' 0 ' means there is no edge.

Output

For each case, output the case number first. Then output $2 N+1$ lines that summarizes the dominator relationship between every pair of nodes. If node A dominates node B, output ' Y ' in cell (A, B), otherwise output ' N '. Cell (A, B) means cell at A-th row and B-th column. Surround the output with ' I ', '+' and ' - ' to make it more legible. Look at the samples for exact format.

Sample Input

```
2
5
01100
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
00000
1
1
```


Sample Output

```
Case 1:
+---------+
|Y|Y|Y|Y|Y|
+--------+
+---------+
|N|N|Y|N|N|
+---------+
|N|N|N|Y|Y|
+---------
|N|N|N|N|Y|
+---------+
Case 2:
+-+
|Y|
+-+
```

