In finance, Internal Rate of Return $(I R R)$ is the discount rate of an investment when NPV equals zero. Formally, given $T, C F_{0}, C F_{1}, \ldots, C F_{T}$, then $I R R$ is the solution to the following equation:

$$
N P V=C F_{0}+\frac{C F_{1}}{1+I R R}+\frac{C F_{2}}{(1+I R R)^{2}}+\ldots+\frac{C F_{T}}{(1+I R R)^{T}}=0
$$

Your task is to find all valid $I R R$ s. In this problem, the initial cash-flow $C F_{0}<0$, while other cash-flows are all positive ($C F_{i}>0$ for all $i=1,2, \ldots$).

Important: $I R R$ can be negative, but it must be satisfied that $I R R>-1$.

Input

There will be at most 25 test cases. Each test case contains two lines. The first line contains a single integer $T(1 \leq T \leq 10)$, the number of positive cash-flows. The second line contains $T+1$ integers: $C F_{0}, C F_{1}, C F_{2}, \ldots, C F_{T}$, where $C F_{0}<0,0<C F_{i}<10000(i=1,2, \ldots, T)$. The input terminates by $T=0$.

Output

For each test case, print a single line, containing the value of $I R R$, rounded to two decimal points. If no $I R R$ exists, print ' No ' (without quotes); if there are multiple $I R R \mathrm{~s}$, print 'Too many' (without quotes).

Sample Input

1
-1 2
2
-8 69
0

Sample Output

1.00
0.50

