There is a rectangle on the cartesian plane, with bottom-left corner at $(0,0)$ and top-right corner at (L, W). There is a ball centered at (x, y), with radius $=R$, shown below

At time 0 , the ball starts to move along a ray with polar angle a (the angle from positive x-axis to the ray, rotating counter-clockwise). When hitting the rectangle boundary, the reflex angle always equals to the incidence angle. The ball's velocity is always v (i.e. it never changes when hitting the rectangle). Where is the center of the ball at time s ?

Input

There will be at most 25 test cases, each contains a line with 8 integers $L, W, x, y, R, a, v, s(100 \leq L, W \leq$ $\left.10^{9}, 1 \leq R \leq 5, R \leq x \leq L-R, R \leq y \leq W-R, 0 \leq a<360,1 \leq v, s \leq 10^{9}\right)$, as stated above. The input terminates with $L=W=x=y=R=a=v=s=0$, which should not be processed.

Output

For each test case, output a line containing two floating-point numbers x, y, rounded to two decimal points, indicating that the center of ball will be at (x, y) at time s.

Sample Input

```
100 100 80 105 90 2 23
110 100 70 10 5 180 1 9999
00000000
```


Sample Output

80.0056 .00
71.0010 .00

