Theorem: If you drop the last digit d of an integer n ($n \geq 10$), subtract $5 d$ from the remaining integer, then the difference is a multiple of 17 if and only if n is a multiple of 17 .

For example, 34 is a multiple of 17 , because $3-20=-17$ is a multiple of $17 ; 201$ is not a multiple of 17 , because $20-5=15$ is not a multiple of 17 .

Given a positive integer n, your task is to determine whether it is a multiple of 17 .

Input

There will be at most 10 test cases, each containing a single line with an integer $n\left(1 \leq n \leq 10^{100}\right)$. The input terminates with $n=0$, which should not be processed.

Output

For each case, print 1 if the corresponding integer is a multiple of 17 , print 0 otherwise.

```
Sample Input
34
201
2098765413
1717171717171717171717171717171717171717171717171718
0
```


Sample Output

