With increasing availability of broadband internet and significant [m————

progress in Web technology, Web Services are playing a crucial role | e vis HTTP |

in application development. The basic idea behind Web Service - l -

is, the server hosting the services can be queried and it will send E - E
back the response based on the query. Similar to all other forms of BOAP
communication, a protocol must exist on how the messages should Messags

be communicated. One popular protocol is SOAP (Simple Object
Access Protocol). As the name suggests, it deals with sending objects across client and server machine.
Since objects are represented differently in different languages, the objects are sent in a common text
based format known as XML. In this problem, we will be analyzing a simplified version of SOAP
messages in XML format and evaluate queries based on the message.

The XML messages will be formatted as below:

i) Each line consists of either an opening tag or a closing tag.
ii) Each tag will have a name.

iii) Each opening tag can have zero or more properties. The properties will have a value assigned to
them. These names and values will have at least one character. The property names in individual
tags will be unique. See examples below for exact formatting.

iv) Closing tags will not have any properties.

v) Tags can be nested inside another tag.

Example XML message and description:

jone valid=“true” active= “alive”
janestedtag;
j/anestedtag;

i/one;

In the above example, we have a tag named ‘one’ which has two properties, namely ‘valid’ and
‘active’. The property named ‘valid’ has a value of ‘true’ and ‘active’ has a value of ‘alive’. Each
property information is separated from each other by a single space and there is also a space after tag
name if the tag has any property. No other space occurs in the XML text other than those mentioned
earlier. There is a tag named ‘anestedtag’ which is nested inside the tag named ‘one’. Note that, this
tag doesn’t have any properties defined. Closing tags contain the same name of the corresponding
opening tag, but is preceded by the ‘/’ character.

You will be given a simplified soap message, containing only start and end tags with property
information embedded in the start tag as the above format. Then you will have some query with some
property name under some tag. You need output the value of the property under the specified tags or
report such property is undefined.

Input

The first line of input will be a positive integer T' < 10, where 1" denotes the number of test cases. Each
case starts with a positive integer n < 1000 and n will always be even. The next n lines each describes
an opening or a closing tag. These lines will have at most 1000 characters. The last line of the input will
always be the closing tag for the tag opened in the first line. No opening tag name will occur more than
once. All input will be syntactically valid, that means all opening tags will also contain a corresponding
closing tags in the appropriate line. The next line will contain a positive integer ¢ < 1000. Each of the
next ¢ lines will describe a query. The query will consist of tag names separated by a dot (.) followed
by few characters in the format ‘("< prop name >"]’, where < prop name > is one or more character
forming a property name. See sample input for exact formatting.
All names and values in the input will consist of alphabets only.

Output

Each case of output will contain the case number in one line. Then there will be ¢ lines, each corre-
sponding to the property value given in the query. If that particular property does not exist, the output
will be ‘Undefined’ without the quotes. Note that, the input queries will always be syntactically valid,
but they may refer to tags and properties that are not defined. If two tags are separated by a .’ it
indicates that the tag to the right should be contained within the left tag. See sample input/output
for further clarification. In output, there should not be any leading or trailing spaces in any of the line.

Sample Input

1

8

<c contest="running">
<d ballon="no">

</d>

</c>

4

a.b.c.d["ballon"]
a.c["contest"]
a.b.c["contest"]
c["contest"]

Sample Output

Case 1:

no
Undefined
running
Undefined

