How many triangles are there when they have integer length sides and all the sides are between X and Y inclusive. Two triangles differs if their side length set s are different. For example $\{2,3,3\},\{2,3,4\}$ and $\{2,2,3\}$ are all different triangles. But $\{5,6,7\}$ and $\{6,5,7\}$ are not different. In a triangle the sum of smaller two sides are strictly greater than the largest side.

Input

Input starts with an integer $T(1 \leq T \leq 20000)$, the number of test cases. Each test case consists of two integer X and $Y(1 \leq X \leq Y \leq 1000000)$.

Output

For each test case, output the number of possible triangles whose side lengths are between X and Y inclusive.

```
Sample Input
5
110
510
515
1020
100400
```


Sample Output

125
55
252
285
3898600

