We all probably know how to find equation of bisectors in Coordinate Geometry. If the equations of two lines are $a_{i} x+b_{i} y+c_{i}=0$ and $a_{j} x+b_{j} y+c_{j}=0$, then the equations of the bisectors of the four angles they create are given by

$$
\frac{a_{i} x+b_{i} y+c_{i}}{\sqrt{a_{i}^{2}+b_{i}^{2}}}= \pm \frac{a_{j} x+b_{j} y+c_{j}}{\sqrt{a_{j}^{2}+b_{j}^{2}}}
$$

Now one has to be quite intelligent to find out for which angles to choose the ' + ' (plus) sign and for which angles to choose the '-' (minus) sign. You will have to do similar sort of choosing in this problem. Suppose there is a fixed point $\left(C_{x}, C_{y}\right)$ and there are $n(n \leq 10000)$ other points around it. No two points from these n points are collinear with $\left(C_{x}, C_{y}\right)$. If you connect all these point with $\left(C_{x}, C_{y}\right)$ you will get a star-topology like image made of n lines. The equations of these n lines are also given and only these equations must be used when finding the equation of bisectors. This n lines create $n(n-1) / 2$ acute or obtuse angles in total and so they have total $n(n-1) / 2$ bisectors. You have to find out how many of these bisectors have equations formed using the ' + ' sign. The image below shows an image where $n=5, C_{x}=5$ and $C_{y}=2$. This image corresponds to the only sample input.

Figure: Five lines above create $5(5-1) / 2=10$ angles and these angles has 10 bisectors. Of these 10 bisectors, the equation of only 4 are formed using the ' + ' sign of the formula

$$
\frac{a_{i} x+b_{i} y+c_{i}}{\sqrt{a_{i}^{2}+b_{i}^{2}}}= \pm \frac{a_{j} x+b_{j} y+c_{j}}{\sqrt{a_{j}^{2}+b_{j}^{2}}}
$$

Input

The input file contains maximum 35 sets of inputs. The description of each set is given below:
First line of each set contains three integers $C_{x}, C_{y}\left(-10000 \leq C_{x}, C_{y} \leq 10000\right)$ and $n(0 \leq n \leq$ 10000). Each of the next n lines contains two integers $x_{i}, y_{i}\left(-20000 \leq x_{i}, y_{i} \leq 20000\right)$ and a string of the form $a_{i} x+b_{i} y+c_{i}=0$. Here $\left(x_{i}, y_{i}\right)$ is the coordinate of a point around (C_{x}, C_{y}) and the string denotes the equation of the line segment formed by connecting $\left(C_{x}, C_{y}\right)$ and (x_{i}, y_{i}). You can assume that $\left(-100000 \leq a_{i}, b_{i} \leq 100000\right)$ and $\left(-2000000000 \leq c_{i} \leq 2000000000\right)$. This equation will actually be used to find the equations of bisectors of the angles that this line creates.

Input is terminated by a set where the value of n is zero.

Output

For each set of input produce one line of output. This line contains an integer number P that denotes of the $\frac{n(n-1)}{2}$ bisector equations how many are formed using the ' + ' sign in the bisector equation

$$
\frac{a_{i} x+b_{i} y+c_{i}}{\sqrt{a_{i}^{2}+b_{i}^{2}}}= \pm \frac{a_{j} x+b_{j} y+c_{j}}{\sqrt{a_{j}^{2}+b_{j}^{2}}}
$$

Sample Input

525
$12710 \mathrm{x}-14 \mathrm{y}-22=0$
$1-424 x-16 y-88=0$
$41032 x+4 y-168=0$
$-1956 x+48 y-376=0$
$12-3-10 x-14 y+78=0$
10100

Sample Output

