Floating-point numbers are represented differently in computers than integers. That is why a 32 -bit floating-point number can represent values in the magnitude of $10^{38}$ while a 32 -bit integer can only represent values as high as $2^{32}$.

Although there are variations in the ways floating-point numbers are stored in Computers, in this problem we will assume that floating-point numbers are stored in the following way:

Sign of Number ( 0 means +ve and
1 means -ve)


8-bit reserved for Mantissa
6-bit reserved for exponent

Floating-point numbers have two parts mantissa and exponent. $M$-bits are allotted for mantissa and $E$ bits are allotted for exponent. There is also one bit that denotes the sign of number (If this bit is 0 then the number is positive and if it is 1 then the number is negative) and another bit that denotes the sign of exponent (If this bit is 0 then exponent is positive otherwise negative). The value of mantissa and exponent together make the value of the floating-point number. If the value of mantissa is $m$ then it maintains the constraints $\frac{1}{2} \leq m<1$. The left most digit of mantissa must always be 1 to maintain the constraint $\frac{1}{2} \leq m<1$. So this bit is not stored as it is always 1 . So the bits in mantissa actually denote the digits at the right side of decimal point of a binary number (Excluding the digit just to the right of decimal point)

In the figure above we can see a floating-point number where $M=8$ and $E=6$. The largest value this floating-point number can represent is (in binary) $0.111111111_{2} \times 2^{111111_{2}}$. The decimal equivalent to this number is: $0.998046875 \times 2^{63}=9205357638345293824_{10}$. Given the maximum possible value represented by a certain floating point type, you will have to find how many bits are allotted for mantissa $(M)$ and how many bits are allotted for exponent $(E)$ in that certain type.

## Input

The input file contains around 300 line of input. Each line contains a floating-point number $F$ that denotes the maximum value that can be represented by a certain floating-point type. The floating point number is expressed in decimal exponent format. So a number $A e B$ actually denotes the value $A \times 10^{B}$. A line containing ' 0 e 0 ' terminates input. The value of $A$ will satisfy the constraint $0<A<10$ and will have exactly 15 digits after the decimal point.

## Output

For each line of input produce one line of output. This line contains the value of $M$ and $E$. You can assume that each of the inputs (except the last one) has a possible and unique solution. You can also assume that inputs will be such that the value of $M$ and $E$ will follow the constraints: $9 \geq M \geq 0$ and $30 \geq E \geq 1$. Also there is no need to assume that $(M+E+2)$ will be a multiple of 8 .

## Sample Input

5.699141892149156 e 76
9.205357638345294 e 18

0e0

## Sample Output

58
86

