It is very easy to find number of trailing zero in n! for a particular base b. In this problem you have to do the reverse. You have to find for how many bases b, n! has k trailing zeros in base b.

Input

Input starts with a positive number $T \leq 10000$, denoting the number of test cases to follow.

Each test case contains two non-negative integers, $n \le 10^{15}$ and $1 \le k \le 10^{15}$ in a line. You may assume that n/k < 500.

Output

For each input output one line containing the number of different bases. Print the solution modulo 1000000007

Sample Input

5

10 2

10 3

10 4

10 5

10 8

Sample Output

Case 1: 24

Case 2: 0

Case 3: 4

Case 4: 0

Case 5: 1